Earlier this week, the University of Toronto signed a multi-year partnership agreement with Nissan North America.

The partnership was facilitated by Climate Positive Energy, U of T’s centre for interdisciplinary clean energy research. It will accelerate both vehicle- and grid-related research and activity through a joint collaboration between Nissan, the University of Toronto’s Electric Vehicle (UTEV) Research Centre and the Grid Modernization Centre (GMC).

On August 26, Professor Timothy Chan (MIE), U of T’s Associate Vice-President and Vice-Provost, Strategic Initiatives, was joined by Atsushi Teraji, General Manager, EV System Laboratory, Nissan Motor Corp. Japan, for a signing ceremony at the historic Hart House.

Chris Scott, Ontario’s Parliamentary Assistant to the Minister of Energy and Mines, joined the ceremony and delivered remarks. Also in attendance were other senior members from both Nissan and U of T.

“Our strategic collaboration with Nissan is essential to developing breakthrough research in cleaner mobility and energy storage,” says Chan.

“This partnership will not only accelerate innovation, but also ensure that our research has real-world impact. We look forward to building solutions together that will shape the future of mobility for future generations.”

U of T’s vehicle research excellence is demonstrated through the UTEV Research Centre, a university-industry research hub focused on advancing the next generation of electric vehicle technologies.

Led by Professor Olivier Trescases (ECE), who is also principal investigator on the the new research project, UTEV supports the transition to sustainable transportation through research in EV power electronics, automotive semiconductors, battery systems and charging infrastructure. UTEV brings together researchers across departments and collaborates with industry, utilities and governments to address critical challenges in electrified transportation.

The collaboration will support a research initiative focused on enabling secure, scalable vehicle-to-grid (V2G) systems in North America. V2G technology allows electric vehicles to both charge from and supply power back to the grid.

Using edge computing, the project will optimize smart charging and real-time energy management across electric vehicles, homes and the grid – laying the groundwork for a virtual power plant model that enhances grid reliability while protecting user privacy. This project will be accomplished as a collaboration between UTEV and the Grid Modernization Centre, and will be a living example of multi-disciplinary work at U of T.

This interdisciplinary research is supported by a strong ecosystem of student and faculty design teams, specialized laboratories and academic expertise. By collaborating with Nissan, U of T aims to accelerate the commercialization of solutions that can make EVs not only greener modes of transportation but also integral components of resilient, decentralized energy networks.

The project will also benefit from the expertise of Professor Baochun Li (ECE), whose research in artificial intelligence and federated learning will inform data-driven energy management approaches.

Nissan is a recognized leader in the mass-market EV space and recently launched the third generation of its LEAF electric car, which is now available with vehicle-to-load (V2L) connections, enabling LEAF to power small- to medium-sized devices from the vehicle’s battery. In other markets such as Japan, the all-new LEAF continues the nameplate’s ability to deliver vehicle-to-home (V2H) functionality, allowing it to supply electricity back to a home or receive solar generated energy.

Nissan’s continued investment into electric mobility includes ongoing research into V2X technologies that will allow EV batteries to serve as an essential part of sustainable energy sourcing. For example, EV owners could use their vehicles as mobile energy sources to power devices and even their homes during power outages, or to supply power back to the grid during peak demand situations to support balanced, greener energy generation. Through this new agreement, Nissan hopes to leverage U of T’s advanced research to enhance the performance, efficiency and real-world deployment of V2G systems worldwide.

“Electric vehicles have the potential to not only decarbonize everyday transportation for drivers, but also to serve as a crucial part of smarter, greener, stronger electrical grids for the future,” says Teraji.

“Collaborative research with the University of Toronto in this crucial field will help us develop real-world applications for the power of EVs and V2X technology.”

Nissan is the latest partner to join the Grid Modernization Centre, which has already engaged more than 50 partners from the energy eco-system including federal departments, industry and original equipment manufacturers (OEMs), utilities, regulators, small- and medium-size enterprises, start-ups, and industry associations.

Nissan’s longstanding leadership in the electric vehicle space will enhance the new partnership by bringing valuable industry insights and real-world challenges that help ground academic research in practical applications, helping the Grid Modernization Centre advance Canada’s commitments to reaching net-zero by 2050.

“Ontario is proud to be the engine of Canada’s automotive and energy innovation,” says Parliamentary Assistant Chris Scott.

“This partnership between the University of Toronto and Nissan demonstrates how Ontario’s world-class post-secondary research is driving advances in clean energy and next-generation vehicles. By leveraging our unmatched talent and innovation, Ontario is strengthening the automotive sector, protecting good-paying jobs today and building the strongest, most resilient economy in the G7 for tomorrow.”

A new design for an e-bike storage facility — developed by engineering and architecture students at the University of Toronto — could help mitigate the impact of fires in battery-powered e-bikes and e-scooters. 

The project is the latest in a long line of successful collaborations facilitated by Engineering Strategies and Practice (ESP), a first-year course that connects engineering students with real clients to design solutions to complex challenges.  

Toronto Fire Services is a long-standing partner of ESP. Over the past several years, they have brought forward a number of projects related to the fire hazards posed by lithium-ion batteries. The technology powers everything from smartphones to electric vehicles, but remains largely unregulated in Canada. 

Jim Chisholm, a fire protection engineer with Toronto Fire Services, has worked with student teams on over a dozen projects since 2016. 

“Lithium-ion batteries are a relatively new technology, and it’s growing exponentially,” says Chisholm. 

“But for things like e-bikes and scooters, there’s nothing saying batteries made without any certification in another country can’t come into Canada. And within the country, there’s nothing saying that somebody can’t produce a battery that has no certification either,” he says.

“It’s a bit like the Wild West.” 

This lack of regulation has led to real-world consequences. Fires caused by faulty or damaged batteries are notoriously difficult to extinguish and can be devastating in residential or commercial settings.

Recognizing this, ESP students have pitched in to explore innovative solutions.

Victor Todorov, a student in the John H. Daniels Faculty of Architecture, Landscape and Design, was a part of a cross-disciplinary team composed of architecture and engineering students. Their project focused on the design of a secure storage pavilion for e-bikes and scooters on U of T’s St. George campus. 

5 students stand beside a screen, presenting a slide that has an outline image and the words Design Exploration
Victor Todorov and his team members present their design at the 2025 ESP showcase. Left to right: Victoria Ferreira, Albert Huang, Gabrielle Wood, Victor Todorov, Mohammadmahdi Shahhaidari. (photo by Richard Ashman)

“Working with lithium-ion battery-powered vehicles, safety was a key consideration; maintaining proper storage, temperatures, docking and charging were all central to the design,” says Todorov. 

“We also had to consider what preventive measures to take in the instance of a fire or explosion. For example, constructing the pavilion’s main walls — which face the nearby Robarts Library — out of reinforced concrete was a choice made to protect the building, as well as contain the fire in the event of a battery flare up.”  

Another past ESP project that Chisholm had been involved in saw the design of a model e-bike store, which was prompted by a deadly fire in a New York City bike shop. 

The team proposed a layout that separated key functions — retail, battery storage, repairs, and disposal — into distinct zones, helping to contain fires and reduce the risk to surrounding areas. 

“Safety is the fundamental underpinning of any engineering project. As engineers, this should be our first consideration,” Chisholm says.  

“One of the things I see working with students in ESP is that they come to a real understanding that these are issues that affect real people.  

“They came up with a really thoughtful layout. It wasn’t just about fire suppression — it was about prevention, containment and practical usability. They were really thinking holistically.” 

As lithium-ion batteries continue to proliferate, the need for thoughtful, safety-first engineering becomes more urgent. U of T engineering students are contributing to this push through ESP.   

“ESP exposes students to the reality that engineering is about people right at the outset of their degree,” Chisholm says. “They’re applying their knowledge and getting valuable experience solving real problems.” 

“Their reports go into our knowledge bank. They help us ask better questions, propose smarter strategies and sometimes even influence future regulations,” he says. 

“The work that the ESP teams are doing is pathfinding. A lot of the issues they’re dealing with have shown possible gaps in regulations that may need to be addressed.”

Professor Milica Radisic (BME, ChemE) has been elected a fellow of the Canadian Academy of Health Sciences (CAHS), one of Canada’s three national academies. The CAHS leverages the expertise of Canada’s leading health sciences researchers to evaluate our most urgent and complex health challenges and recommend solutions. To be named a CAHS Fellow is considered one of the highest distinctions for academics in the health sciences in Canada.

Radisic is the Canada Research Chair in Organ-on-a-Chip Engineering and a senior scientist at the Toronto General Hospital Research Institute. She is also director of the NSERC CREATE Training Program in Organ-on-a-Chip Engineering & Entrepreneurship and a co-founder of the Centre for Research and Applications in Fluidic Technologies.

Radisic is internationally recognized for spearheading the field of organ-on-a-chip engineering and pioneering new tissue vascularization approaches. She invented methods to grow and mature contractile heart tissues starting from human stem cells, providing platforms for developing and studying human tissues and organs. This heart-on-a-chip technology is key to enabling a paradigm switch from “one-size fits all” drug discovery and testing in animals, towards precise and tailored discovery and testing in human tissues.

To commercially translate this technology, Radisic co-founded TARA Biosystems with her students. The company grew to more than 20 employees before its acquisition by Valo Health in 2022. At Valo, Radisic’s IP is the engine for AI-powered drug discovery, where AI-designed drugs are tested and validated in human cardiac tissue. A second start-up, Quthero, was formed to commercialize unique regenerative peptide materials developed in her lab.

Already a fellow of the Royal Society of Canada and the Canadian Academy of Engineering, Radisic is one of only a handful of scholars to be elected to all three of Canada’s national academies. She is also a fellow of the American Institute of Medical and Biological Engineering, the Tissue Engineering and Regenerative Medicine International Society, the American Association for the Advancement of Science, and the U.S. National Academy of Inventors.

In 2024, Radisic garnered the NSERC John C. Polanyi Award, for a recent outstanding scientific advance. Earlier this year she received a Governor General’s Innovation Award.

“Milica Radisic’s election to this prestigious institution, which makes her a member of all three of Canada’s national academies, demonstrates the incredible impact of her heart-on-a-chip technology across the fields of medicine and engineering, says U of T Engineering Dean Christopher Yip.

“On behalf of the faculty, I congratulate her on this well-deserved honour.”

When Kelvin Cui (EngSci 2T2) launched Peripheral Labs, a computer vision startup, he knew he needed to build a team with a very specific mindset — and he knew just where to find that. 

“During my undergrad, I was part of the U of T Formula Racing Team, and also aUToronto, which is our self-driving car team,” says Cui. 

“There’s no out-of-the-box solution for any of the problems we needed to solve, and the competition is fierce. You need to be scrappy, to work fast, and to be able to take the theory that you learn in class and apply it to the actual challenges in front of you. The ambition, drive and competitive mentality that gets nurtured in those teams is what I wanted for my company.” 

Though the seeds of Peripheral were planted while Cui was living in San Francisco and working at an acceleration program called Entrepreneurs First, he knew that Toronto was where he really wanted to be. 

“The brain drain is real — if you walk around San Francisco, you run into so many people from Canada, and from Toronto in particular,” he says. 

“I recognize the talent that there is at U of T. I thought that if we could offer the pay and experience that you could get with a startup in San Francisco, but enable people to stay here where the cost of living isn’t quite as high, we could hire the talent we need to create a really competitive, research-based company.” 

After talking to some of his former teammates from U of T Formula Racing, he heard about the U of T Engineering Partnerships Office, the Faculty’s new co-location space at 800 Bay Street. The space is located adjacent to U of T’s St. George campus, in the heart of downtown Toronto. Cui and his team moved into that space in March 2025. 

“Not only are we plugged into the talent pipeline, but we can also partner with the university to design new ways of testing our software, and we can consult with all kinds of experts in virtually any field,” he says. 

“It’s been great.” 

Peripheral is one of seven partner organizations that are currently co-located at the U of T Engineering Partnerships Office, thereby embedding themselves within a community of companies, researchers and entrepreneurs. 

Co-located partners benefit from amenities, resources and convenience while tapping into an ecosystem that fosters rich collaboration. In addition to partner companies, the space is also home to AGE-WELL, a unique Canadian network dedicated to developing technologies and services for healthy aging.  

“In creating this space, we were inspired by the Fujitsu Co-Creation Laboratory, which has been around for the better part of a decade now,” says Adriano Vissa, Executive Director, Partnerships at U of T Engineering. 

“They license space in the Myhal Centre here on campus, and as a result, are able to work very closely with a wide range of experts across U of T. Over the years, this has led them to expand the number of professors they are working with and evolve the focus of their research program to meet the needs of their industry. 

“It’s a really great example of what long-term, sustainable partnerships can do, so we wanted to explore ways to scale that up.” 

The Engineering Partnerships Office includes private office space for co-located companies, lounge spaces, meeting rooms and a large bookable event hall. Partners pay a monthly fee that includes access to all the facilities. A compete description of what is available can be found on the U of T Engineering Partnerships website.  

Vissa says that what he finds most rewarding is when the new proximity sparks unexpected collaborations. 

“Earlier this year, we had a reception in the event space for the GenAI Collective, Toronto Chapter, which connects innovators in AI through in-person gatherings,” says Vissa. 

“The CEO of one of our co-located partner companies was in the office that day, and mingled with the student attendees. He was so impressed that he came out to chat with some of them; I don’t know if any of them got hired, but it’s a good example of how putting talented people together in a room can lead to new ideas and new ventures.” 

For Anastasia Polulyakhova (Year 3 MechE) and Katie Hung (Year 3 ChemE), this summer has been a whirlwind of hands-on learning as interns dedicated to Project Leap, the University of Toronto’s ambitious plan to reduce greenhouse gas (GHG) emissions by over 50 per cent by the end of 2027.

Polulyakhova’s focus has been lighting, supporting work to upgrade to energy efficient LEDs in 38 buildings across campus. She has been digging deep into the numbers to track, summarize and analyze energy savings data made possible by the upgrades.

“I’ve learned a lot about excel,” she laughs.

Hung has become a fixture in the construction zone currently surrounding the Medical Sciences Building, where crews are hard at work connecting key buildings to Canada’s largest urban geoexchange system under Front Campus. Her role has included site supervision, personal protective equipment monitoring and communicating with contractors about scheduling, issues management and more.

Both have found the experience invaluable, and have enjoyed the exposure to so many experienced professionals across a variety of trades and disciplines, including pipe fitters, welders, installers, heat tracers and energy managers with the St. George Sustainability Office.

“It’s awesome to hear people geek out about their work,” says Anastasia.

The real-world experience has been illuminating, with principles learned in class appearing in their work.

“It’s like all these puzzle pieces coming together,” says Katie, “what we’ve learned in class and what we’ve learned in real life.”

With their help, the first big step in the university’s vision to make the St. George campus climate positive by 2050 is coming to life. Through campus-wide sustainability solutions, including transforming how we heat and cool our campus, Project Leap will save nearly 50,000 metric tonnes of GHG emissions annually — equivalent to the energy use of more than 10,000 homes.

And while their summer internships with Ecosystem, one of the construction partners supporting Project Leap, may be coming to an end, Katie and Anastasia have a busy year of clubs, work and school ahead of them. With a few weeks left to go, they’re enthusiastic about learning as much as they can, and enjoying the generosity of spirit they’ve experienced on site.

You can learn more about Project Leap here.

Researchers at the University of Toronto, Brigham and Women’s Hospital, and Harvard Medical School have developed a swallowable, low-cost device that changes colour in the presence of inflammation in the gut.

Designed for people with inflammatory bowel diseases (IBD), such as Crohn’s disease or ulcerative colitis, the PRIM pill (Pill for ROS-responsive Inflammation Monitoring) could offer an easy, at-home alternative to current monitoring tools such as colonoscopies or lab-analyzed stool samples. With further development, this technology could help doctors and patients detect flare-ups earlier and adjust treatments more effectively.

This study was published in Device, a journal by Cell Press. The work is being co-led by Professor Caitlin Maikawa at the Institute of Biomedical Engineering at the University of Toronto, along with Professors Yuhan Lee and Jeffrey Karp, both at Harvard Medical School and Brigham and Women’s Hospital.

IBD affects more than seven million people worldwide and is often marked by unpredictable episodes of inflammation in the digestive tract. While long-term management depends on keeping inflammation under control, current methods for monitoring gut health are either invasive, expensive or underused. Colonoscopies remain the gold standard but are not practical for frequent use. Stool-based tests are less invasive, but many patients are unwilling to collect or send in samples, which limits long-term tracking.

“There’s a clear need for a tool that can make routine inflammation monitoring easier and more accessible for patients,” says Maikawa, co-corresponding author of the study.

“Our goal was to design something simple, affordable and patient-friendly that makes it possible to detect inflammation without needing a lab.”

The PRIM device uses a chemical marker called reactive oxygen species (ROS), which increases in the intestines during inflammation. The pill is coated with a specially designed polymer that remains intact in healthy conditions but breaks down when ROS levels are high. When this occurs, the pill releases a harmless blue dye. If inflammation is present, the dye colours the stool and toilet water blue, providing a clear visual signal that can be observed at home without handling stool or using specialized equipment.

The team tested the device in rats with induced gut inflammation and found that the pill detected inflammation with approximately 78 percent accuracy. Because the materials used to make the device are inexpensive, researchers estimate it could cost less than 50 cents to manufacture at scale. The simplicity of the design makes it more accessible to a broader population, including those in lower-resource settings.

The team continues to work on refining the pill design to bring the technology closer to clinical use. Lucia Huang, co-lead author on the study and an MSc student on Maikawa’s team, is working on new polymer materials that will more sensitively detect inflammatory markers like ROS. Future studies will also test the device in larger animal models that better mimic humans.

“We are working on refining the pill design, including improving the pill’s accuracy and exploring how our pill could interface with digital health technologies,” says Maikawa.

“Our long-term aim is to make regular inflammation monitoring as easy as possible.”